
Fourier Analysis



FOURIER SERIES

• Usually, a signal is described as a function of 
time .

• There are some amazing advantages if a signal 
can be expressed in the frequency domain.

• Fourier transform analysis is named after Jean 
Baptiste Joseph Fourier (1768-1830). 
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• A Fourier series (FS) is used for
representing a continuous-time periodic
signal as weighted superposition of
sinusoids.

• Periodic Signals A continuous-time signal
is said to be periodic if there exists a
positive constant such that

where is the period of the signal.
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• : fundamental Period

• : fundamental frequency

• Example: Periodic and aperiodic signal
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= 

3 sin(x) A

+ 1 sin(3x) B A+B

+ 0.8 sin(5x) C
A+B+C

+ 0.4 sin(7x) D
A+B+C+D

A sum of sines and cosines

sin(x) 

A



Existence of the Fourier Series

• Existence

• Convergence for all t

• Finite number of maxima and minima in one 
period of f(t)

• These are known as the Dirichlet conditions
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Fourier Series

• General representation
of a periodic signal

• Fourier series
coefficients

• Polar Form of Fourier
series
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• {xn} are called the Fourier series coefficients of the signal 
x(t).

• The quantity                 is called the fundamental frequency 
of the signal x(t)

• The Fourier series expansion can be expressed in terms of 
angular frequency                by

and
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• Discrete spectrum - We may write                     , where 
gives the magnitude of the nth harmonic and           

gives its phase.                      
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• Example: Let x(t) denote the periodic signal depicted in 
Figure 2.2
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is a rectangular pulse. Determine the Fourier series expansion for this signal.

10



Solution: We first observe that the period of the signal is T0 

and 
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Therefore, we have
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Example #1

     

 

 

. as amplitudein  decrease  and 
161
8 504.0 2sin2

161
2 504.0 2cos2

504.0121

2sin2cos

20
2

20
2

2
0

2
0

1
0























































nba
n

ndtnteb

n
dtntea

edtea

ntbntaatf

nn

t

n

t

n

t

n
nn














• Fundamental period
T0 = p

• Fundamental frequency
f0 = 1/T0 = 1/pHz

w0 = 2p/T0 = 2 rad/s
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Example #2

• Fundamental period
T0 = 2

• Fundamental frequency
f0 = 1/T0 = 1/2Hz

w0 = 2p/T0 = p rad/s
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Example #3

• Fundamental period
T0 = 2p

• Fundamental frequency
f0 = 1/T0 = 1/2pHz

w0 = 2p/T0 = 1 rad/s
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